Aws
Auth
Axios
Admin
Angular
Android
Atom Payment
BPO
BcryptJs
Bootstrap
Basic Computer
C Language
C++
Css
Canva
Common questions
CorelDraw
Cloudinary
Content Writer
DSA
Django
Error
Excel
ExpressJs
Flutter
Github
Graphql
GoDaddy
HR
Html5
Hostinger
Jwt
Java
Json
Jquery
Javascript
Linux OS
Loopback API
MySQL
Manager
MongoDB
Marketing
MS Office
Mongoose
NodeJs
NextJs
Php
Python
Photoshop
PostgreSQL
PayU Payment
Paypal Payment
Redux
ReactJs
Router
React Native
React Router Dom
React Helmet
Sass
SEO
SMO
Stripe Payment
System Administrator
Software Testing
Typescript
Tailwind
Telesales
Tally
VueJs
Windows OS
XML
What is Bootstrap's pagination component?
Bootstrap's pagination component helps in navigating through multiple pages of content. It is implemented using the `pagination` class: Example : - <nav> <ul class='pagination'> <li class='page-item'> <a class='page-link' href='#'>1</a> </li> </ul> </nav>
Bootstrap's pagination component helps in navigating through multiple pages of content. It is implemented using the `pagination` class: Example : - <nav> <ul class='pagination'> <li class='page-item'> <a class='page-link' href='#'>1</a> </li> </ul> </nav>
What are Angular Guards?
Angular Guards are interfaces that allow developers to control navigation to and from routes in an Angular application. They are used to protect routes based on conditions such as user authentication or authorization. There are several types of guards: `CanActivate` (to decide if a route can be activated), `CanDeactivate` (to decide if a route can be deactivated), `Resolve` (to fetch data before a route is activated), and `CanLoad` (to decide if a module can be lazily loaded). Implementing guards helps ensure that users have the proper permissions and data before accessing certain parts of the application.
Angular Guards are interfaces that allow developers to control navigation to and from routes in an Angular application. They are used to protect routes based on conditions such as user authentication or authorization. There are several types of guards: `CanActivate` (to decide if a route can be activated), `CanDeactivate` (to decide if a route can be deactivated), `Resolve` (to fetch data before a route is activated), and `CanLoad` (to decide if a module can be lazily loaded). Implementing guards helps ensure that users have the proper permissions and data before accessing certain parts of the application.
What is Angular's router module?
Angular's Router module is responsible for enabling navigation and routing within a single-page application (SPA). It allows developers to define routes, which map URL paths to specific components, enabling seamless transitions between different views or pages without reloading the entire application. The Router module provides features like route parameters, route guards, and lazy loading, which help manage navigation, security, and performance. By configuring routes and integrating the `RouterOutlet` directive, Angular applications can offer a dynamic and user-friendly experience.
Angular's Router module is responsible for enabling navigation and routing within a single-page application (SPA). It allows developers to define routes, which map URL paths to specific components, enabling seamless transitions between different views or pages without reloading the entire application. The Router module provides features like route parameters, route guards, and lazy loading, which help manage navigation, security, and performance. By configuring routes and integrating the `RouterOutlet` directive, Angular applications can offer a dynamic and user-friendly experience.
How do you implement routing in Angular?
Routing in Angular is implemented using the Router module, which provides a way to navigate between different components based on URL paths. To set up routing, you first import `RouterModule` and `Routes` from `@angular/router` in your Angular module. You then define an array of routes that map URL paths to components. This configuration is passed to the `RouterModule.forRoot()` method in the module's imports array. The `<router-outlet>` directive is used in the template to specify where the routed components should be displayed. This setup allows for seamless navigation and dynamic content rendering within the application.
Routing in Angular is implemented using the Router module, which provides a way to navigate between different components based on URL paths. To set up routing, you first import `RouterModule` and `Routes` from `@angular/router` in your Angular module. You then define an array of routes that map URL paths to components. This configuration is passed to the `RouterModule.forRoot()` method in the module's imports array. The `<router-outlet>` directive is used in the template to specify where the routed components should be displayed. This setup allows for seamless navigation and dynamic content rendering within the application.
How do you handle deep linking in React Native?
Deep linking in React Native can be handled using libraries such as `react-navigation` and `react-native-deep-linking`. You need to configure your app to listen for URL schemes or universal links. For `react-navigation`, you define deep link configuration in your navigation setup and handle the URL routing to navigate to the appropriate screen.
Deep linking in React Native can be handled using libraries such as `react-navigation` and `react-native-deep-linking`. You need to configure your app to listen for URL schemes or universal links. For `react-navigation`, you define deep link configuration in your navigation setup and handle the URL routing to navigate to the appropriate screen.
How can you navigate between screens in React Native?
In React Native, you can navigate between screens using navigation libraries like React Navigation or React Native Navigation. React Navigation provides components such as `Stack.Navigator`, `Tab.Navigator`, and `Drawer.Navigator` to handle different types of navigation. It allows for the easy setup of stack, tab, and drawer navigators to manage screen transitions.
In React Native, you can navigate between screens using navigation libraries like React Navigation or React Native Navigation. React Navigation provides components such as `Stack.Navigator`, `Tab.Navigator`, and `Drawer.Navigator` to handle different types of navigation. It allows for the easy setup of stack, tab, and drawer navigators to manage screen transitions.
What is `React Native Navigation`?
`React Native Navigation` is a library developed by Wix that provides a navigation solution with native performance and behavior. Unlike React Navigation, which is JavaScript-based, React Native Navigation uses native components for navigation, offering smoother and more performant transitions and interactions. It supports stack, tab, and drawer navigation with extensive customization options.
`React Native Navigation` is a library developed by Wix that provides a navigation solution with native performance and behavior. Unlike React Navigation, which is JavaScript-based, React Native Navigation uses native components for navigation, offering smoother and more performant transitions and interactions. It supports stack, tab, and drawer navigation with extensive customization options.
What is the difference between Navigator.push and Navigator.pushReplacement?
Navigator.push adds a new route on top of the current one, allowing users to return to the previous screen. In contrast, Navigator.pushReplacement replaces the current route with a new one, removing the previous route from the stack. For example, using push for a login screen allows users to return to the previous screen, while pushReplacement would not.
Navigator.push adds a new route on top of the current one, allowing users to return to the previous screen. In contrast, Navigator.pushReplacement replaces the current route with a new one, removing the previous route from the stack. For example, using push for a login screen allows users to return to the previous screen, while pushReplacement would not.